题目内容
12.| A. | 80° | B. | 60° | C. | 50° | D. | 40° |
分析 首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.
解答 解:∵AB=AC,∠BAC=100°,
∴∠B=∠C=(180°-100°)÷2=40°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠BAE=∠B=40°,
故选D.
点评 本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.
练习册系列答案
相关题目
7.
如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为( )
| A. | (2,-1) | B. | (2,3) | C. | (0,1) | D. | (4,1) |
1.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )
| A. | 至少有1个球是黑球 | B. | 至少有1个球是白球 | ||
| C. | 至少有2个球是黑球 | D. | 至少有2个球是白球 |