题目内容

如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.

(1)若AB=3,AD=,求△BMC的面积;

(2)点E为AD的中点时,求证:AD=BN .

(1)3;(2)证明见解析. 【解析】试题分析:(1)只要证明△ABM≌△CAD,推出BM=AD=,推出AM=1,推出CM=CA﹣AM=2,根据S△BCM=•CM•BA,计算即可; (2)如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.想办法证明△ENC是等腰直角三角形即可解决问题. 试题解析:【解析】 (1)如图1中,在△ABM和△CAD中,∵AB=AC,∠BAM...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网