题目内容
(4分)= .
(3分)(2015•郴州)下列图案是轴对称图形的是( ).
A. B. C. D.
(4分)点(﹣1,)、(2,)是直线上的两点,则 (填“>”或“=”或“<”)
(12分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
(4分)将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是 .
(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=( )
A. B. C.12 D.24
(8分)如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.
(1)求证:BC是⊙O的切线;
(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=,AD=3,求直径AB的长.
(3分)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( )
A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)
(7分)补充完整三角形中位线定理,并加以证明:
(1)三角形中位线定理:三角形的中位线 ;
(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.