题目内容
【题目】如图,若折叠矩形
的一边
,使点
落在
边的点
处,已知折痕
且.以
为原点,
所在直线为
轴建立如图所示的平面直角坐标系,抛物线
经过点
.
(1)求
的值;
(2)点
是线段
上一动点,点
在抛物线上,且始终满足
,在点
运动过程中,能否使得
?若能,求出所有符合条件的点
的坐标;若不能,请说明理由;
(3)已知点
是拋物线上一动点,点
在
的延长线上,且
,若在
轴上存在一点
,使
有最小值,求点
的纵坐标的最大值.
![]()
【答案】(1)
;(2)存在点
,
;(3)点
纵坐标的最大值为
.
【解析】
(1)由折叠和矩形的性质可知:∠EDB=∠BCE=90°,可证△ABD∽△ODE,从而求c;
(2)由(1)中的相似三角形可求得DA、AB,进而求出F的坐标,得BF=DF.再利用直角三角形的性质可得MD=MB,从而推导出结论;
(3)设抛物线与x轴交于M、N两点,过点D作x轴垂线交BC于点G.可求得DM=DN=DG,进而得出M、N为满足条件的点Q.
解:(1)由
,设
,则
,
,∴
.
由题意,得
,
∴
.
∵
,
∴
,
∴
,
∴
,∴
,
∴
.
∵
,在
中,由勾股定理,得
,即
,
解得
.∴
.
∵抛物线
经过点
,
∴
.
(2)假设存在.
由(1)知,
,∴
,
.
∴
.
易求直线BE的解析式为
.
设
,作PG⊥x轴于点
,
轴于点H.
∵
,
,
∴
.
① 图1,若点
在点
左侧时,
则
,
,
,
∴
.
∵点
在线段BE上.
∴
.
解得
(舍去)或
.
∴
.
![]()
② 图2,若点
在点
右侧时,
则
,
,
.
∴
.
∵点
在线段BE上,
∴
,
解得
(舍去)或
.
∴![]()
综上,存在点
,
,使得
.
(3)∵
,点
在
的延长线上,且
,∴
.
如图3,当点
在
轴左侧时,
与
轴的交点就是使得
有最小值的点
.
显然,当直线
与抛物线只有一个公共点时,点
的纵坐标最大.
设直线
的解析式为y=kx+b,则
,
∴
,∴
.
令
,
即
,
∴
,
解得
(舍去),
.
∴直线
的解析式为
.
∴点
纵坐标的最大值为
.
![]()
如图4,当点
在
轴右侧时,作点
关于
轴的对称点
,则
.连接
交
轴于点
,则点
就是使得
有最小值的点.
显然,当直线
与抛物线只有一个公共点时,点
的纵坐标最大.设直线
的解析式为y=kx+b,则
.
∴
,∴
.
令
,
即
,
∴
,
解得
(舍去),
.
∴直线
的解析式为
.
∴点
的纵坐标的最大值为
.
∵
,∴
,∴
,
∴点
纵坐标的最大值为
.
【题目】将从1开始的连续自然数按图规律排列:
列 行 | 第1列 | 第2列 | 第3列 | 第4列 |
第1行 | 1 | 2 | 3 | 4 |
第2行 | 8 | 7 | 6 | 5 |
第3行 | 9 | 10 | 11 | 12 |
第4行 | 16 | 15 | 14 | 13 |
… | … | … | … | … |
第 | … | … | … | … |
规定位于第
行,第
列的自然数10记为
,自然数15记为
…按此规律,自然数2018记为______.