题目内容

2.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.
(1)证明:△ADF≌△AB′E;
(2)若AD=12,DC=18,求△AEF的面积.

分析 (1)根据折叠的性质以及矩形的性质,运用ASA即可判定△ADF≌△AB′E;
(2)先设FA=FC=x,则DF=DC-FC=18-x,根据Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18-x)2=x2,解得x=13. 再根据AE=AF=13,即可得出S△AEF=$\frac{1}{2}•AE•AD$=78.

解答 解:(1)∵四边形ABCD是矩形,
∴∠D=∠C=∠B′=90°,AD=CB=AB′,
∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,
∴∠DAF=∠B′AE,
在△ADF和△AB′E中,
$\left\{\begin{array}{l}{∠D=∠B′}\\{AD=AB′}\\{∠DAF=∠B′AE}\end{array}\right.$,
∴△ADF≌△AB′E(ASA).

(2)由折叠性质得FA=FC,
设FA=FC=x,则DF=DC-FC=18-x,
在Rt△ADF中,AD2+DF2=AF2
∴122+(18-x)2=x2
解得x=13. 
∵△ADF≌△AB′E(已证),
∴AE=AF=13,
∴S△AEF=$\frac{1}{2}•AE•AD$=$\frac{1}{2}×12×13$=78.

点评 本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以及三角形面积的计算公式的运用,解决问题的关键是:设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网