题目内容

如图,已知∠1+∠2=180°,∠DAE=∠BCF.
(1)试判断直线AE与CF有怎样的位置关系?并说明理由;
(2)若∠BCF=70°,求∠ADF的度数.
考点:平行线的判定与性质
专题:
分析:(1)求出∠1=∠BDC,根据平行线的判定推出即可;
(2)根据平行线的性质得出∠BCF=∠CBE,求出∠DAE=∠CBE,根据平行线的判定推出AD∥BC,根据平行线的性质得出即可.
解答:解:(1)AE∥CF,
理由是:∵∠1+∠2=180°,∠BDC+∠2=180°,
∴∠1=∠BDC,
∴AE∥CF;

(2)∵AE∥CF,
∴∠BCF=∠CBE,
又∵∠DAE=∠BCF,
∴∠DAE=∠CBE,
∴AD∥BC,
∴∠ADF=∠BCF=70°.
点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网