题目内容

10.如图,⊙O的圆心在Rt△ABC的斜边AB上,且⊙O分别与边AC、BC相切于D、E两点,已知AC=3,BC=4,则⊙O的半径r=$\frac{12}{7}$.

分析 连结OD、OE,如图,根据切线的性质得∠ODC=∠OEC=90°,再证明四边形OECD为正方形得到CE=r,然后证明△BOE∽△BAC,利用相似比得到r:3=(4-r):4,再利用比例性质求r即可.

解答 解:连结OD、OE,如图,
∵⊙O分别与边AC、BC相切于D、E两点,
∴OD⊥AC,OE⊥BC,
∴∠ODC=∠OEC=90°,
而∠C=90°,
∴四边形OECD为矩形,
而OE=OD,
∴四边形OECD为正方形,
∴CE=r,
∴BE=BC-CE=4-r,
∵OE∥AC,
∴△BOE∽△BAC,
∴OE:AC=BE:BC,即r:3=(4-r):4,
∴r=$\frac{12}{7}$.
故答案为$\frac{12}{7}$.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.解决本题的关键是证明CE=r.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网