题目内容

12.(1)如图1,AC=AE,∠1=∠2,∠C=∠E.求证:BC=DE.
(2)如图2,在△ABC中,AB=AC,D为BC中点,∠BAD=30°,求∠C的度数.

分析 (1)利用“ASA”证明△ABC≌△ADE,从而得到BC=DE;
(2)利用等腰三角形的性质可判断AD平分∠BAC,则∠BAD=∠CAD=30°,于是可判定△ABC为等边三角形,然后根据等边三角形的性质可得到∠C=60°.

解答 (1)证明:∵∠1=∠2,
∴∠BAC=∠DAE,
在△ABC和△ADE中
$\left\{\begin{array}{l}{∠BAC=∠DAE}\\{AC=AE}\\{∠C=∠E}\end{array}\right.$,
∴△ABC≌△ADE,
∴BC=DE;
(2)解:∵D为BC中点,
∴BD=CD,
∵AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=30°,
∴∠BAC=60°,
∴△ABC为等边三角形,
∴∠C=60°.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网