题目内容

8.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足,则结论①AC+CD=AB;②AD=BF;③BF=2BE;④BE=CF.其中正确的结论是①②③.

分析 根据BC=AC,∠ACB=90°可知∠CAB=∠ABC=45°,再由AD平分∠BAC可知∠BAE=∠EAF=22.5°,在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,可求出∠EAF=∠FBC,由BC=AC可求出Rt△ADC≌Rt△BFC,故可求出AD=BF;故②正确;
由△ADC≌△BFC可知,CF=CD,故AC+CD=AC+CF=AF,∠CBF=∠EAF=22.5°,在Rt△AEF中,∠F=90°-∠EAF=67.5°,根据∠CAB=45°可知,∠ABF=180°-∠EAF-∠CAB=67.5°,即可求出AF=AB,即AC+CD=AB故①正确;
由ABF是等腰三角形,由于BE⊥AD,故BE=$\frac{1}{2}$BF,在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF;故④错误;
由ABF是等腰三角形,由于BE⊥AD,根据等腰三角形三线合一的性质即可得到BF=2BE,故③正确.

解答 解:∵BC=AC,∠ACB=90°,
∴∠CAB=∠ABC=45°,
∵AD平分∠BAC,
∴∠BAE=∠EAF=22.5°,
∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,
∴∠EAF=∠FBC,
在△ADC与△BFC中,
$\left\{\begin{array}{l}{∠EAF=∠FBC}\\{∠BCF=∠AEF}\\{BC=AC}\end{array}\right.$,
∴△ADC≌△BFC,
∴AD=BF,
故②正确;
∵△ADC≌△BFC,
∴CF=CD,AC+CD=AC+CF=AF,
∵∠CBF=∠EAF=22.5°,
∴在Rt△AEF中,∠F=90°-∠EAF=67.5°,
∵∠CAB=45°,
∴∠ABF=180°-∠F-∠CAB=180°-67.5°-45°=67.5°,
∴AF=AB,即AC+CD=AB,
故①正确;
∵△ABF是等腰三角形,
∵BE⊥AD,
∴BE=$\frac{1}{2}$BF,
∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,
故BE≠CF,
故④错误;
∵△ABF是等腰三角形,BE⊥AD,
∴BF=2BE,
故③正确.
故选A.

点评 本题考查的是全等三角形的判定和性质,线段垂直平分线的性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网