题目内容

如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.

(1)证明四边形ABCD是菱形,并求点D的坐标;

(2)求抛物线的对称轴和函数表达式;

(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.

【解析】 (1)证明:∵A(﹣6,0),B(4,0),C(0,8), ∴AB=6+4=10,。∴AB=AC。 由翻折可得,AB=BD,AC=CD。∴AB=BD=CD=AC。∴四边形ABCD是菱形。 ∴CD∥AB。 ∵C(0,8),∴点D的坐标是(10,8)。 (2)∵y=ax2﹣10ax+c,∴对称轴为直线。 设M的坐标为(5,n),直线BC的解析式为y=kx...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网