题目内容

13.若等腰三角形的两边长分别为2和5,则它的周长为(  )
A.9B.7C.12D.9或12

分析 求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

解答 解:(1)若2为腰长,5为底边长,
由于2+2<5,则三角形不存在;
(2)若5为腰长,则符合三角形的两边之和大于第三边.
所以这个三角形的周长为5+5+2=12.
故选C.

点评 本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网