题目内容

15.四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为(  )
A.80°B.90°C.100°D.130°

分析 延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N,此时△AMN周长最小,推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决.

解答 解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.
∵∠ABC=∠ADC=90°,
∴A、A′关于BC对称,A、A″关于CD对称,
此时△AMN的周长最小,
∵BA=BA′,MB⊥AB,
∴MA=MA′,同理:NA=NA″,
∴∠A′=∠MAB,∠A″=∠NAD,
∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,
∴∠AMN+∠ANM=2(∠A′+∠A″),
∵∠BAD=130°,
∴∠A′+∠A″=180°-∠BAD=50°M
∴∠AMN+∠ANM=2×50°=100°.
故选C.

点评 本题考查对称的性质、线段垂直平分线的性质、三角形内角和定理等知识,利用对称作辅助线是解决最短的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网