题目内容

9.(1)计算:-24-$\sqrt{12}$+|1-4sin60°|+(π-1)0
(2)先化简,再求值:(1-$\frac{3}{x+2}$)÷$\frac{x-1}{{x}^{2}+2x}$-$\frac{x}{x+1}$,其中x满足x2-x-1=0.

分析 (1)原式第一项利用乘方的意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.

解答 解:(1)原式=-16-2$\sqrt{3}$+2$\sqrt{3}$-1+1=-16;
(2)原式=$\frac{x+2-3}{x+2}$•$\frac{x(x+2)}{x-1}$-$\frac{x}{x+1}$=x-$\frac{x}{x+1}$=$\frac{{x}^{2}}{x+1}$,
由x2-x-1=0,得到x2-x=1,
则原式=1.

点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网