ÌâÄ¿ÄÚÈÝ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬A£¨m£¬0£©£¬B£¨m+4£¬0£©£¬¶ÔÓÚÏß¶ÎABºÍxÖáÉÏ·½µÄµãP¸ø³öÈç϶¨Ò壺µ±45¡ã¡Ü¡ÏAPB¡Ü90¡ãʱ£¬³ÆµãPΪÏß¶ÎABµÄ¡°°ëÔµ㡱£®
£¨1£©Èô m=2ʱ£¬
¢ÙÔÚµãC£¨3£¬1 £©£¬D£¨ 5£¬3 £©£¬E£¨ 2£¬4 £©ÖУ¬Ïß¶ÎABµÄ¡°°ëÔµ㡱ÓÐD¡¢E£»
¢ÚÔÚÖ±Ïßy=x+bÉÏ´æÔÚÏß¶ÎABµÄ¡°°ëÔµ㡱£¬ÇóbµÄȡֵ·¶Î§£®
£¨2£©Çë´ÓÏÂÃæÁ½¸öÎÊÌâÖÐÈÎѡһ¸ö×÷´ð£®
ÎÂܰÌáʾ£ºÁ½Ìâ¾ù´ð²»Öظ´¼Æ·Ö£®
ÎÊÌâÒ»£ºÖ±Ïßy=-x+14ÓëxÖá½»ÓÚµãM£¬ÓëyÖá½»ÓÚµãN£¬ÈôÏß¶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£¬Ö±½Óд³ömµÄȡֵ·¶Î§£®
ÎÊÌâ¶þ£ºµãG£¨3£¬-1£©£¬µãPΪÏß¶ÎABµÄ¡°°ëÔµ㡱£¬Ö±ÏßGP°ÑÏß¶ÎAB·Ö³É1£º3Á½²¿·Ö£¬µ±m=1ʱ£¬Ö±½Óд³öµãPµÄºá×ø±êµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¢ÙÈçͼ»­³ö¡°°ëÔÂÐÍ¡±µÄͼÐμ´¿ÉÅжϣ»¢Úµ±Ö±Ïßy=x+b¾­¹ýµãB£¨6£¬0£©Ê±£¬b=-6£¬µ±Ö±ÏßÓë$\widehat{AEB}$ÏàÇÐʱ£¬ÓÉ$\left\{\begin{array}{l}{y=x+b}\\{£¨x-4£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½2x2+£¨2b-12£©x+b2-4b+12=0£¬ÓÉÌâÒâ¡÷=0£¬¿ÉµÃb2+4b-12=0£¬½âµÃb=2»ò-6£¬Óɴ˼´¿ÉÅжϣ»
£¨2£©ÎÊÌâÒ»£ºÒ×Öª¡°°ëÔÂÐÍ¡±µÄ´óÔ²°ë¾¶Îª2$\sqrt{2}$£¬Ð¡Ô²°ë¾¶Îª2£¬µ±¡°°ëÔÂÐÍ¡±ÓëyÖáÏàÇÐʱ£¬m=2$\sqrt{2}$-2£¬µ±¡°°ëÔÂÐÍ¡±ÓëÖ±Ïßy=-x+14ÏàÇÐʱ£¬Ò×ÖªÇеãΪ£¨10£¬4£©£¬´ËʱB£¨10£¬0£©£¬m=6£¬¼´¿ÉÍÆ³öµ±$2\sqrt{2}-2$£¼m£¼6ʱ£¬Ïß¶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£®
ÎÊÌâ¶þ£ºÈçͼ3ÖУ¬Ö±ÏßPG·ÖÏß¶ÎABÈýµÈ·Ö£¬¢Ùµ±Ö±ÏßPG¾­¹ýQ£¨2£¬0£©Ê±£¬Ö±ÏßPGµÄ½âÎöʽΪy=-x+2£¬ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}{+y}^{2}=4}\end{array}\right.$½âµÃM£¨$\frac{5-\sqrt{7}}{2}$£¬$\frac{-1+\sqrt{7}}{2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬½âµÃH£¨$\frac{3-\sqrt{7}}{2}$£¬$\frac{\sqrt{7}+1}{2}$£©£¬¿ÉµÃµãPµÄºá×ø±êµÄ·¶Î§Îª$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®
¢Úµ±Ö±ÏßPG¾­¹ýF£¨4£¬0£©Ê±£¬Í¬·¨¿ÉÇó£»

½â´ð ½â£º£¨1£©¢ÙÈçͼ1ÖУ¬¹Û²ìͼÏó¿ÉÖª£¬Ïß¶ÎABµÄ¡°°ëÔµ㡱ÓÐD£¬E£®
¹Ê´ð°¸ÎªD¡¢E£®

¢ÚÈçͼ2ÖУ¬

¢Ùµ±Ö±Ïßy=x+b¾­¹ýµãB£¨6£¬0£©Ê±£¬b=-6£¬
¢Úµ±Ö±ÏßÓë$\widehat{AEB}$ÏàÇÐʱ£¬ÓÉ$\left\{\begin{array}{l}{y=x+b}\\{£¨x-4£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃµ½2x2+£¨2b-12£©x+b2-4b+12=0£¬
ÓÉÌâÒâ¡÷=0£¬¿ÉµÃb2+4b-12=0£¬½âµÃb=2»ò-6£¬
×ÛÉÏËùÊö£¬ÔÚÖ±Ïßy=x+bÉÏ´æÔÚÏß¶ÎABµÄ¡°°ëÔµ㡱£¬bµÄȡֵ·¶Î§Îª-6¡Üb¡Ü2£®
-6£¼b¡Ü2£®

£¨3£©ÎÊÌâ1£ºÒ×Öª¡°°ëÔÂÐÍ¡±µÄ´óÔ²°ë¾¶Îª2$\sqrt{2}$£¬Ð¡Ô²°ë¾¶Îª2£¬
µ±¡°°ëÔÂÐÍ¡±ÓëyÖáÏàÇÐʱ£¬m=2$\sqrt{2}$-2£¬
µ±¡°°ëÔÂÐÍ¡±ÓëÖ±Ïßy=-x+14ÏàÇÐʱ£¬Ò×ÖªÇеãΪ£¨10£¬4£©£¬´ËʱB£¨10£¬0£©£¬m=6£¬
¡àµ±$2\sqrt{2}-2$£¼m£¼6ʱ£¬Ïß¶ÎABµÄËùÓС°°ëÔµ㡱¶¼ÔÚ¡÷MONÄÚ²¿£®

ÎÊÌâ2£ºÈçͼ3ÖУ¬

¡ßÖ±ÏßPG·ÖÏß¶ÎABÈýµÈ·Ö£¬
¢Ùµ±Ö±ÏßPG¾­¹ýQ£¨2£¬0£©Ê±£¬
Ö±ÏßPGµÄ½âÎöʽΪy=-x+2£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}{+y}^{2}=4}\end{array}\right.$½âµÃM£¨$\frac{5-\sqrt{7}}{2}$£¬$\frac{-1+\sqrt{7}}{2}$£©£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+2}\\{£¨x-3£©^{2}+£¨y-2£©^{2}=8}\end{array}\right.$£¬½âµÃH£¨$\frac{3-\sqrt{7}}{2}$£¬$\frac{\sqrt{7}+1}{2}$£©£¬
¡àµãPµÄºá×ø±êµÄ·¶Î§Îª$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®
¢Úµ±Ö±ÏßPG¾­¹ýF£¨4£¬0£©Ê±£¬
Ö±ÏßPGµÄ½âÎöʽΪy=-x-4£¬Í¬·¨¿ÉµÃµãPµÄºá×ø±êµÄȡֵ·¶Î§Îª$\frac{{7+\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{9+\sqrt{7}}}{2}$£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãPµÄºá×ø±êµÄȡֵ·¶Î§Îª$\frac{{7+\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{9+\sqrt{7}}}{2}$£¬$\frac{{3-\sqrt{7}}}{2}$¡Üx¡Ü$\frac{{5-\sqrt{7}}}{2}$£®

µãÆÀ ±¾Ì⿼²éÒ»´Îº¯Êý×ÛºÏÌâ¡¢Ô²¡¢Ò»Ôª¶þ´Î·½³Ì×é¡¢¸ùµÄÅбðʽµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓø¨ÖúÔ²½â¾öÎÊÌ⣬ѧ»áÓÃת»¯µÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»áÓ÷½³Ì×é½â¾öÓйؽ»µãÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø