题目内容

16.解方程(或组)
(1)$\left\{\begin{array}{l}{x=1-y}\\{2x-y+4=0}\end{array}$        
(2)$\left\{\begin{array}{l}{2x-5y=9}\\{\frac{x+y}{3}=\frac{x-y}{2}+1}\end{array}$           
(3)$\left\{\begin{array}{l}{3x+4z=7}\\{2x+3y+z=9}\\{x-y+z=8}\end{array}$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x=1-y①}\\{2x-y+4=0②}\end{array}\right.$,
把①代入②得:2-2y-y+4=0,即y=2,
把y=2代入①得:x=-1,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{2x-5y=9①}\\{x-5y=-6②}\end{array}\right.$,
①-②得:x=15,
把x=15代入②得:y=$\frac{21}{5}$,
则方程组的解为$\left\{\begin{array}{l}{x=15}\\{y=\frac{21}{5}}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x+4z=7①}\\{2x+3y+z=9②}\\{x-y+z=8③}\end{array}\right.$,
②+③×3得:5x+4z=33④,
④-①得:2x=26,即x=13,
把x=13代入①得:z=-8,
把x=13,z=-8代入③得:y=-3,
则方程组的解为$\left\{\begin{array}{l}{x=13}\\{y=-3}\\{z=-8}\end{array}\right.$.

点评 此题考查了解二元一次方程组,以及解三元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网