题目内容

15.已知一元二次方程x2+3x+m-1=0.
(1)若方程有两个不相等的实数根,求实数m的取值范围.
(2)若方程有两个相等的实数根,其此时方程的根.

分析 (1)由方程x2+3x+m-1=0有两个不相等实数根,则△>0,即△=32-4(m-1)=13-4m>0,解不等式即可;
(2)根据一元二次方程x2-3x+m-1=0有两个相等的实数根,得出△=b2-4ac=0,再代入求解即可.

解答 解:(1)∵一元二次方程x2+3x+m-1=0有两个不相等实数根,
∴△>0,
即△=32-4(m-1)=13-4m>0,解得m<$\frac{13}{4}$,
所以m的取值范围为m<$\frac{13}{4}$;

(2)∵一元二次方程x2-3x+m-1=0有两个相等的实数根,
∴△=b2-4ac=0,
即:(-3)2-4(m-1)=0,
解得:m=$\frac{13}{4}$,
∴原方程为x2-3x+$\frac{9}{4}$=0,
∴x1=x2=$\frac{3}{2}$.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网