题目内容

15.如图:矩形ABCD的对角线AC,BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,试判断四边形CODP的形状.

分析 根据一组对边平行且相等的四边形是平行四边形可得四边形CODP是平行四边形,再根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形解答.

解答 解:四边形CODP是菱形,
理由:∵DP∥OC,DP=OC,
∴四边形CODP是平行四边形,
∵矩形ABCD的对角线AC、BD交于点O,
∴OC=OD,
∴平行四边形CODP是菱形,
故四边形CODP是菱形.

点评 本题考查了矩形的性质,菱形的判定,关键是掌握矩形对角线互相平分且相等,邻边相等的平行四边形是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网