ÌâÄ¿ÄÚÈÝ
£¨1£©Èçͼ£¬¾ØÐÎABCDÖУ¬AB=5cm£¬BC=2cm£¬ÔÚAB±ßÉÏȡһµãE£¬£¨µãEÓëA£¬B²»Öغϣ©£¬Á¬½ÓCE¡¢DE£¬·Ö¾ØÐÎABCDËù³ÉµÄ3¸öÈý½ÇÐζ¼ÏàËÆ£®ÎÒÃǰÑÕâÑùµÄµãE½Ð×ö¾ØÐÎABCDµÄAB±ßÉϵÄÈ«ÏàËÆµã£¬ÔÚͼµÄAB±ßÉÏ»³öÂú×ãÒªÇóµÄÈ«ÏàËÆµãE£¬²¢ÇóAEµÄ³¤£»£¨»Í¼¹¤¾ß²»ÏÞ£¬¿ÉÒÔ¼òµ¥ËµÃ÷£©
£¨2£©¶ÔÓÚÈÎÒâÒ»¸ö¾ØÐÎABCD£¬AB±ßÉÏÊÇ·ñÒ»¶¨´æÔÚÕâÑùµÄÈ«ÏàËÆµãE£¿Èç¹ûÒ»¶¨´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»Èç¹û²»Ò»¶¨´æÔÚ£¬Çë¾ÙÀý˵Ã÷£»
£¨3£©ÔÚËıßÐÎABCDÖУ¬AD¡ÎBC£¬AD£¼BC£¬¡ÏB=90¡ã£¬µ±µãEÊÇËıßÐÎABCDµÄAB±ßÉϵÄÒ»¸öÈ«ÏàËÆµãʱ£®Çë̽¾¿£ºAEÓëBEµÄÊýÁ¿¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©¶ÔÓÚÈÎÒâÒ»¸ö¾ØÐÎABCD£¬AB±ßÉÏÊÇ·ñÒ»¶¨´æÔÚÕâÑùµÄÈ«ÏàËÆµãE£¿Èç¹ûÒ»¶¨´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»Èç¹û²»Ò»¶¨´æÔÚ£¬Çë¾ÙÀý˵Ã÷£»
£¨3£©ÔÚËıßÐÎABCDÖУ¬AD¡ÎBC£¬AD£¼BC£¬¡ÏB=90¡ã£¬µ±µãEÊÇËıßÐÎABCDµÄAB±ßÉϵÄÒ»¸öÈ«ÏàËÆµãʱ£®Çë̽¾¿£ºAEÓëBEµÄÊýÁ¿¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦½ÇÏàµÈ¿ÉµÃ¡ÏA=¡ÏB=¡ÏCED£¬×÷ÒÔCDΪֱ¾¶µÄÔ²£¬ÓëABµÄ½»µã¼´ÎªËùÇóµÄµãE£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó½â¼´¿ÉµÃµ½AEµÄÖµ£»
£¨2£©¸ù¾Ý£¨1£©µÄ×÷·¨£¬Èô¾ØÐεĿí´óÓÚ³¤µÄÒ»°ë£¬ÔòÔ²ÓëÁíÒ»±ßûÓн»µã£¬Ò²¾Í²»´æÔÚÈ«ÏàËÆµã£»
£¨3£©¸ù¾ÝÈ«ÏàËÆµãµÄ¶¨Òå¿ÉµÃ¡÷ADEºÍ¡÷BECÏàËÆ£¬ÔÙ¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó½â¼´¿É£®
£¨2£©¸ù¾Ý£¨1£©µÄ×÷·¨£¬Èô¾ØÐεĿí´óÓÚ³¤µÄÒ»°ë£¬ÔòÔ²ÓëÁíÒ»±ßûÓн»µã£¬Ò²¾Í²»´æÔÚÈ«ÏàËÆµã£»
£¨3£©¸ù¾ÝÈ«ÏàËÆµãµÄ¶¨Òå¿ÉµÃ¡÷ADEºÍ¡÷BECÏàËÆ£¬ÔÙ¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó½â¼´¿É£®
½â´ð£º
½â£º£¨1£©Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬¡ÏA=¡ÏB=90¡ã£¬
¡ßÈý¸öÈý½ÇÐζ¼ÏàËÆ£¬
¡à¡ÏCED=90¡ã£¬
ÒÔCDΪֱ¾¶×÷¡ÑO£¬ÓëABÏཻ£¬½»µã¼´ÎªµãE£¬
ÉèAE=x£¬ÔòBE=AB-AE=5-x£¬
¡ß¡÷ADE¡×¡÷BEC£¬
¡à
=
£¬
¼´
=
£¬
ÕûÀíµÃ£¬x1=1£¬x2=4£¬
ËùÒÔ£¬AEµÄ³¤Îª1cm»ò4cm£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬µ±¾ØÐεij¤AB£¼2ADʱ£¬Ô²ÓëABûÓн»µã£¬ËùÒÔAB±ßÉϲ»´æÔÚÕâÑùµÄÈ«ÏàËÆµãE£»
£¨3£©AEÓëBEµÄÊýÁ¿¹ØÏµÎª£ºAE•BE=AD•BC£®
ÀíÓÉÈçÏ£ºÈçͼ£¬¡ßµãEÊÇËıßÐÎABCDµÄAB±ßÉϵÄÒ»¸öÈ«ÏàËÆµã£¬
¡à¡÷ADE¡×¡÷BEC£¬
¡à
=
£¬
¡àAE•BE=AD•BC£®
¡ßÈý¸öÈý½ÇÐζ¼ÏàËÆ£¬
¡à¡ÏCED=90¡ã£¬
ÒÔCDΪֱ¾¶×÷¡ÑO£¬ÓëABÏཻ£¬½»µã¼´ÎªµãE£¬
ÉèAE=x£¬ÔòBE=AB-AE=5-x£¬
¡ß¡÷ADE¡×¡÷BEC£¬
¡à
| AE |
| BC |
| AD |
| BE |
¼´
| x |
| 2 |
| 2 |
| 5-x |
ÕûÀíµÃ£¬x1=1£¬x2=4£¬
ËùÒÔ£¬AEµÄ³¤Îª1cm»ò4cm£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬µ±¾ØÐεij¤AB£¼2ADʱ£¬Ô²ÓëABûÓн»µã£¬ËùÒÔAB±ßÉϲ»´æÔÚÕâÑùµÄÈ«ÏàËÆµãE£»
£¨3£©AEÓëBEµÄÊýÁ¿¹ØÏµÎª£ºAE•BE=AD•BC£®
ÀíÓÉÈçÏ£ºÈçͼ£¬¡ßµãEÊÇËıßÐÎABCDµÄAB±ßÉϵÄÒ»¸öÈ«ÏàËÆµã£¬
¡à¡÷ADE¡×¡÷BEC£¬
¡à
| AD |
| BE |
| AE |
| BC |
¡àAE•BE=AD•BC£®
µãÆÀ£º±¾ÌâÊÇÏàËÆÈý½ÇÐÎ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁËÏàËÆÈý½ÇÐεĶÔÓ¦±ß³É±ÈÀýµÄÐÔÖÊ£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬Àí½âÈ«ÏàËÆµãµÄ¶¨Ò壬Åжϳö¡ÏCED=90¡ã£¬´Ó¶øÈ·¶¨×÷ÒÔCDΪֱ¾¶µÄÔ²ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿