题目内容

2.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③-$\frac{4}{3}$≤a≤-1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有(  )
A.2个B.3个C.4个D.5个

分析 根据抛物线开口向下判断出a<0,再根据顶点横坐标用a表示出b,根据与y轴的交点求出c的取值范围,然后判断出①错误,②正确,根据点A的坐标用c表示出a,再根据c的取值范围解不等式求出③正确,根据顶点坐标判断出④正确,⑤错误,从而得解.

解答 解:∵抛物线开口向下,
∴a<0,
∵顶点坐标(1,n),
∴对称轴为直线x=1,
∴-$\frac{b}{2a}$=1,
∴b=-2a>0,
∵与y轴的交点在(0,3),(0,4)之间(包含端点),
∴3≤c≤4,
∴abc<0,故①错误,
3a+b=3a+(-2a)=a<0,故②正确,
∵与x轴交于点A(-1,0),
∴a-b+c=0,
∴a-(-2a)+c=0,
∴c=-3a,
∴3≤-3a≤4,
∴-$\frac{4}{3}$≤a≤-1,故③正确,
∵顶点坐标为(1,n),
∴当x=1时,函数有最大值n,
∴a+b+c≥am2+bm+c,
∴a+b≥am2+bm,故④正确,
一元二次方程ax2+bx+c=n有两个相等的实数根x1=x2=1,故⑤错误,
综上所述,结论正确的是②③④共3个.
故选B.

点评 本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a、b的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网