题目内容

13.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为(  )
A.12寸B.13寸C.24寸D.26寸

分析 根据垂径定理和勾股定理求解.

解答 解:连接OA,如图所示,
设直径CD的长为2x,则半径OC=x,
∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,
∴AE=BE=$\frac{1}{2}$AB=$\frac{1}{2}$×10=5寸,
连接OA,则OA=x寸,
根据勾股定理得x2=52+(x-1)2
解得x=13,
CD=2x=2×13=26(寸).
故选D.

点评 本题考查了垂径定理和勾股定理.正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网