题目内容

6.如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是(  )
A.B.C.D.

分析 根据点P的运动过程可知:△APD的底边为AD,而且AD始终不变,点P到直线AD的距离为△APD的高,根据高的变化即可判断S与t的函数图象.

解答 解:设点P到直线AD的距离为h,
∴△APD的面积为:S=$\frac{1}{2}$AD•h,
当P在线段AB运动时,
此时h不断增大,S也不端增大
当P在线段BC上运动时,
此时h不变,S也不变,
当P在线段CD上运动时,
此时h不断减小,S不断减少,
又因为匀速行驶且CD>AB,所以在线段CD上运动的时间大于在线段AB上运动的时间
故选(C)

点评 本题考查函数图象,解题的关键是根据点P到直线AD的距离来判断s与t的关系,本题属于基础题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网