ÌâÄ¿ÄÚÈÝ
ÒÑÖª£ºÅ×ÎïÏßy = x2+(2m£1)x + m2£1¾¹ý×ø±êԵ㣬ÇÒµ±x < 0ʱ£¬yËæxµÄÔö´ó¶ø¼õС.
(1)ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³öy < 0ʱ£¬¶ÔÓ¦xµÄȡֵ·¶Î§;
(2)ÉèµãAÊǸÃÅ×ÎïÏßÉÏλÓÚxÖáÏ·½µÄÒ»¸ö¶¯µã£¬¹ýµãA×÷xÖáµÄƽÐÐÏß½»Å×ÎïÏßÓÚÁíÒ»µãD£¬ÔÙ×÷AB¡ÍxÖáÓÚµãB£¬ DC¡ÍxÖáÓÚµãC. ¢Ùµ±BC=1ʱ£¬Ö±½Óд³ö¾ØÐÎABCDµÄÖܳ¤;
¢ÚÉ趯µãAµÄ×ø±êΪ (a£¬b)£¬½«¾ØÐÎABCDµÄÖܳ¤L±íʾΪaµÄº¯Êý²¢Ð´³ö×Ô±äÁ¿µÄȡֵ·¶Î§£¬ÅжÏÖܳ¤ÊÇ·ñ´æÔÚ×î´óÖµ£¬Èç¹û´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£¬²¢Çó³ö´ËʱµãAµÄ×ø±ê;Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.
½â£º(1)¡ßÅ×ÎïÏß¾¹ý×ø±êÔµã(0,0)
¡àm2£1=0
¡àm = ¡À1
¡ày = x2+x»òy = x2£3x¡¡
¡ßx<0ʱ£¬yËæxµÄÔö´ó¶ø¼õС
¡à y = x2£3x¡¡
ÓÉͼÏóÖª£ºy<0ʱ£¬0<x<3¡¡
(2)¢Ùµ±BC=1ʱ,ÓÉÅ×ÎïÏߵĶԳÆÐÔÖªµãBµÄ×Ý×ø±êΪ£2£®ËùÒÔ¾ØÐεÄÖܳ¤Îª6 ¡
(3)¢Ú¡ßµãAµÄ×ø±êΪ£¨a£¬b£©
¡àµ±µãAÔÚ¶Ô³ÆÖá×ó²àʱ,¾ØÐÎABCDµÄÒ»±ßBC=3£2a£¬ÁíÒ»±ßAB=3a£a2
Öܳ¤L=£2a2+2a+6 ,ÆäÖÐ 0£¼a£¼
µ±µãAÔÚ¶Ô³ÆÖáÓÒ²àʱ,¾ØÐεÄÒ»±ßBC=3£(6£2a)=2a£3, ÁíÒ»±ßAB=3a£a2
Öܳ¤L=£2a2+10a£6£¬ÆäÖÐ
£¼a£¼3
¡àµ±0£¼a£¼
ʱ£¬L=£2(a£
)2+
¡àµ±a =
ʱ£¬L×î´ó=
£¬Aµã×ø±êΪ(
,£
)
µ±
£¼a£¼3ʱ£¬L=£2(a£
)2+
¡àµ±a =
ʱ£¬L×î´ó=
£¬Aµã×ø±êΪ(
,£
)