ÌâÄ¿ÄÚÈÝ


ÒÑÖª£ºÅ×ÎïÏßy = x2+(2m£­1)x + m2£­1¾­¹ý×ø±êÔ­µã£¬ÇÒµ±x < 0ʱ£¬yËæxµÄÔö´ó¶ø¼õС.

(1)ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³öy < 0ʱ£¬¶ÔÓ¦xµÄȡֵ·¶Î§;

(2)ÉèµãAÊǸÃÅ×ÎïÏßÉÏλÓÚxÖáÏ·½µÄÒ»¸ö¶¯µã£¬¹ýµãA×÷xÖáµÄƽÐÐÏß½»Å×ÎïÏßÓÚÁíÒ»µãD£¬ÔÙ×÷AB¡ÍxÖáÓÚµãB£¬ DC¡ÍxÖáÓÚµãC. ¢Ùµ±BC=1ʱ£¬Ö±½Óд³ö¾ØÐÎABCDµÄÖܳ¤;

¢ÚÉ趯µãAµÄ×ø±êΪ (a£¬b)£¬½«¾ØÐÎABCDµÄÖܳ¤L±íʾΪaµÄº¯Êý²¢Ð´³ö×Ô±äÁ¿µÄȡֵ·¶Î§£¬ÅжÏÖܳ¤ÊÇ·ñ´æÔÚ×î´óÖµ£¬Èç¹û´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£¬²¢Çó³ö´ËʱµãAµÄ×ø±ê;Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.


½â£º(1)¡ßÅ×ÎïÏß¾­¹ý×ø±êÔ­µã(0,0)

¡àm2£­1=0

¡àm = ¡À1

¡ày = x2+x»òy = x2£­3x¡¡

¡ßx<0ʱ£¬yËæxµÄÔö´ó¶ø¼õС

¡à y = x2£­3x¡¡

ÓÉͼÏóÖª£ºy<0ʱ£¬0<x<3¡¡

(2)¢Ùµ±BC=1ʱ,ÓÉÅ×ÎïÏߵĶԳÆÐÔÖªµãBµÄ×Ý×ø±êΪ£­2£®ËùÒÔ¾ØÐεÄÖܳ¤Îª6 ¡­

(3)¢Ú¡ßµãAµÄ×ø±êΪ£¨a£¬b£©

¡àµ±µãAÔÚ¶Ô³ÆÖá×ó²àʱ,¾ØÐÎABCDµÄÒ»±ßBC=3£­2a£¬ÁíÒ»±ßAB=3a£­a2

Öܳ¤L=£­2a2+2a+6 ,ÆäÖÐ 0£¼a£¼

µ±µãAÔÚ¶Ô³ÆÖáÓÒ²àʱ,¾ØÐεÄÒ»±ßBC=3£­(6£­2a)=2a£­3, ÁíÒ»±ßAB=3a£­a2

Öܳ¤L=£­2a2+10a£­6£¬ÆäÖУ¼a£¼3

¡àµ±0£¼a£¼Ê±£¬L=£­2(a£­)2+¡àµ±a = ʱ£¬L×î´ó= £¬Aµã×ø±êΪ(,£­)

µ±£¼a£¼3ʱ£¬L=£­2(a£­)2+ ¡àµ±a = ʱ£¬L×î´ó= £¬Aµã×ø±êΪ(,£­)  


Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø