题目内容
一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______.
8 ;
解方程:.
如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为
A. 236π B. 136π
C. 132π D. 120π
已知:抛物线y = x2+(2m-1)x + m2-1经过坐标原点,且当x < 0时,y随x的增大而减小.
(1)求抛物线的解析式,并写出y < 0时,对应x的取值范围;
(2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B, DC⊥x轴于点C. ①当BC=1时,直接写出矩形ABCD的周长;
②设动点A的坐标为 (a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.
若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是
A.矩形 B.菱形 C.对角线相等的四边形 D.对角线互相垂直的四边形
先化简,再求值:
,其中满足
已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.
(1)如图13-1,当点C的横坐标为1时,求直线BC的解析式;
(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;
(3)如图13-2,设(m<0),过点的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由
2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,图7表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题:2·1·c·n·j·y
(1)2014年益阳市的地区生产总值为多少亿元?
(2)请将条形统计图中第二产业部分补充完整;
(3)求扇形统计图中第二产业对应的扇形的圆心角度数.
图4是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有 根小棒.