题目内容

13.如图,△ABC中,AB=7cm,AC=8cm,BC=6cm,点O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交于点E、F,则△CEF的周长为(  )
A.14cmB.15cmC.13cmD.10.5cm

分析 先根据三角形内心的定义得到AO、BO是∠CAB和∠CBA的角平分线,结合平行线的性质可证明∠EAO=∠EOA,∠FOB=∠FBO,于是得到EO=EA,OF=FB,故此可得到EF=AE+BF,根据三角形的周长公式计算即可.

解答 解:连接OA、OB.
∵点O是△ABC的内心,
∴AO、BO分别是∠CAB和∠CBA的角平分线.
∴∠EAO=∠BAO,∠FBO=∠ABO.
∵EF∥BA,
∴∠EOA=∠OAB,∠FOB=∠OBA.
∴∠EAO=∠EOA,∠FOB=∠FBO.
∴EO=EA,OF=FB.
∴EF=AE+BF,
∴△CEF的周长=CE+CF+EF=CE+EA+CF+FB=CA+CB=14,
故选:A.

点评 本题主要考查的是三角形的内心、平行线的性质、等腰三角形的判定,明确三角形的内心是三条角平分线的交点是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网