题目内容
16.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为29元.| 型号 | A | B |
| 单个盒子容量(升) | 2 | 3 |
| 单价(元) | 5 | 6 |
分析 设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为$\frac{15-2x}{3}$个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.
解答 解:设购买A种型号盒子x个,购买盒子所需要费用为y元,
则购买B种盒子的个数为$\frac{15-2x}{3}$个,
①当0≤x<3时,y=5x+$\frac{15-2x}{3}×6$=x+30,
∵k=1>0,
∴y随x的增大而增大,
∴当x=0时,y有最小值,最小值为30元;
②当3≤x时,y=5x+$\frac{15-2x}{3}×6$-4=26+x,
∵k=1>0,
∴y随x的增大而增大,
∴当x=3时,y有最小值,最小值为29元;
综合①②可得,购买盒子所需要最少费用为29元.
故答案为:29.
点评 本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.
练习册系列答案
相关题目
7.
将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则$\frac{PM}{CN}$的值为( )
| A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{2}$ |
1.
在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是( )
| A. | 甲的速度随时间的增加而增大 | B. | 乙的平均速度比甲的平均速度大 | ||
| C. | 在起跑后第180秒时,两人相遇 | D. | 在起跑后第50秒时,乙在甲的前面 |
5.
如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于( )
| A. | 50° | B. | 30° | C. | 20° | D. | 15° |