题目内容

7.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则$\frac{PM}{CN}$的值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$

分析 先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到$\frac{PM}{CN}$=$\frac{PD}{CD}$,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=$\frac{PD}{CD}$,于是可得$\frac{PM}{CN}$=$\frac{\sqrt{3}}{3}$.

解答 解:∵点D为斜边AB的中点,
∴CD=AD=DB,
∴∠ACD=∠A=30°,∠BCD=∠B=60°,
∵∠EDF=90°,
∴∠CPD=60°,
∴∠MPD=∠NCD,
∵△EDF绕点D顺时针方向旋转α(0°<α<60°),
∴∠PDM=∠CDN=α,
∴△PDM∽△CDN,
∴$\frac{PM}{CN}$=$\frac{PD}{CD}$,
在Rt△PCD中,∵tan∠PCD=tan30°=$\frac{PD}{CD}$,
∴$\frac{PM}{CN}$=tan30°=$\frac{\sqrt{3}}{3}$.
故选C.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网