ÌâÄ¿ÄÚÈÝ
8£®ÏÈ×ÐϸÔĶÁ²ÄÁÏ£¬ÔÙ³¢ÊÔ½â¾öÎÊÌ⣺Íêȫƽ·½¹«Ê½x2¡À2xy+y2=£¨x¡Ày£©2¼°£¨x¡Ày£©2µÄÖµºãΪ·Ç¸ºÊýµÄÌØµãÔÚÊýѧѧϰÖÐÓÐ׏㷺µÄÓ¦Ó㬱ÈÈç̽Çó¶àÏîʽ2x2+12x-4µÄ×î´ó£¨Ð¡£©ÖµÊ±£¬ÎÒÃÇ¿ÉÒÔÕâÑù´¦Àí£º
½â£ºÔʽ=2£¨x2+6x-2£©
=2£¨x2+6x+9-9-2£©
=2[£¨x+3£©2-11]
=2£¨x+3£©2-22
ÒòΪÎÞÂÛxȡʲôÊý£¬¶¼ÓУ¨x+3£©2µÄֵΪ·Ç¸ºÊý£¬ËùÒÔ£¨x+3£©2µÄ×îСֵΪ0£¬´Ëʱx=-3£¬½ø¶ø2£¨x+3£©2-22µÄ×îСֵÊÇ2¡Á0-22=-22£¬ËùÒÔµ±x=-3ʱ£¬Ô¶àÏîʽµÄ×îСֵÊÇ-22
½â¾öÎÊÌ⣺
Çë¸ù¾ÝÉÏÃæµÄ½âÌâ˼·£¬Ì½Çó
£¨1£©¶àÏîʽ3x2-6x+12µÄ×îСֵÊǶàÉÙ£¬²¢Ð´³ö¶ÔÓ¦µÄxµÄȡֵ£®
£¨2£©¶àÏîʽ-x2-2x+8µÄ×î´óÖµÊǶàÉÙ£¬²¢Ð´³ö¶ÔÓ¦µÄxµÄȡֵ£®
·ÖÎö £¨1£©ÏȰѸø³öµÄʽ×Ó»¯³ÉÍêȫƽ·½µÄÐÎʽ£¬ÔÙ¸ù¾Ý·Ç¸ºÊýµÄÐÔÖʼ´¿ÉµÃ³ö´ð°¸£»
£¨2£©¸ù¾ÝÍêȫƽ·½¹«Ê½°Ñ¸ø³öµÄʽ×Ó½øÐÐÕûÀí£¬¼´¿ÉµÃ³ö´ð°¸£®
½â´ð ½â£º£¨1£©3x2-6x+12
=3£¨x2-2x+4£©
=3£¨x2-2x+1-1+4£©
=3£¨x-1£©2+9£¬
¡ßÎÞÂÛxȡʲôÊý£¬¶¼ÓУ¨x-1£©2µÄֵΪ·Ç¸ºÊý£¬
¡à£¨x-1£©2µÄ×îСֵΪ0£¬´Ëʱx=1£¬
¡à3£¨x-1£©2+9µÄ×îСֵΪ£º3¡Á0+9=9£¬
Ôòµ±x=1ʱ£¬Ô¶àÏîʽµÄ×îСֵÊÇ9£»
£¨2£©-x2-2x+8
=-£¨x2+2x-8£©
=-£¨x2+2x+1-1-8£©
=-£¨x+1£©2+9£¬
¡ßÎÞÂÛxȡʲôÊý£¬¶¼ÓУ¨x+1£©2µÄֵΪ·Ç¸ºÊý£¬
¡à£¨x+1£©2µÄ×îСֵΪ0£¬´Ëʱx=-1£¬
¡à-£¨x+1£©2+9µÄ×î´óֵΪ£º-0+9=9£¬
Ôòµ±x=-1ʱ£¬Ô¶àÏîʽµÄ×î´óÖµÊÇ9£®
µãÆÀ ´ËÌ⿼²éÁËÅä·½·¨µÄÓ¦Óã¬Óõ½µÄ֪ʶµãÊÇÍêȫƽ·½¹«Ê½£¬·Ç¸ºÊýµÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊǰѸø³öµÄʽ×Ó»¯³ÉÍêȫƽ·½µÄÐÎʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®ÏÂÁÐÈ¥À¨ºÅ´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | 2x2-£¨x-3y£©=2x2-x+3y | B£® | $\frac{1}{3}$x2+£¨3y2-2xy£©=$\frac{1}{3}$x2+3y2-2xy | ||
| C£® | a2-£¨-a+1£©=a2-a-1 | D£® | -£¨b-2a+2£©=-b+2a-2 |
18£®ÏÂÁÐÑ¡ÏîÖУ¬ÊÇ·½³Ìx-2y=2µÄ½âÊÇ£¨¡¡¡¡£©
| A£® | $\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$ |