题目内容

13.如图,△ABC的外角∠ACD的平分线与内角∠ABC平分线交于点P,若∠BPC=25°,则∠BAC的度数是50°.

分析 根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC,根据角平分线的定义可得∠PCD=$\frac{1}{2}$∠ACD,∠PBC=$\frac{1}{2}$∠ABC,然后整理得到∠PCD=$\frac{1}{2}$∠A,再代入数据计算即可得解.

解答 解:在△ABC中,∠ACD=∠A+∠ABC,
在△PBC中,∠PCD=∠P+∠PBC,
∵PB、PC分别是∠ABC和∠ACD的平分线,
∴∠PCD=$\frac{1}{2}$∠ACD,∠PBC=$\frac{1}{2}$∠ABC,
∴∠P+∠PCB=$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠A+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠A+∠PCB,
∴∠P=$\frac{1}{2}$∠A,
∴∠PBC=25°,
∴∠A=2×25°=50°,
即∠BAC=50°.
故答案为:50°.

点评 本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=$\frac{1}{2}$∠A是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网