题目内容
18.| A. | CM=BC | B. | CB=$\frac{1}{2}$AB | C. | ∠ACM=30° | D. | CH•AB=AC•BC |
分析 由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,然后由相似三角形的对应边成比例,证得CH2=AH•HB;由△ABC中,∠ACB=90°,CM是斜边AB上中线,根据直角三角形斜边的中线等于斜边的一半,即可得CM=$\frac{1}{2}$AB.
解答 解:△ABC中,∠ACB=90°,CM分别是斜边AB上的中线,可得:CM=AM=MB,但不能得出CM=BC,故A错误;
根据直角三角形斜边的中线等于斜边的一半,即可得CM=$\frac{1}{2}$AB,但不能得出CB=$\frac{1}{2}$AB,故B错误;
△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,无法得出∠ACM=30°,故C错误;
由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,根据相似三角形的对应边成比例得出CH•AB=AC•BC,故D正确;
故选D
点评 此题考查了相似三角形的判定与性质、勾股定理以及直角三角形斜边上的中线的性质.注意证得△ACH∽△CHB是关键.
练习册系列答案
相关题目