题目内容

17.如图,在△ABC中,∠C>∠B,AD是△ABC的角平分线,AE⊥BC于点E,试说明∠DAE=$\frac{1}{2}$(∠C-∠B).

分析 根据直角三角形两锐角互余得出∠CAE+∠C=90°,再根据角平分线定义得出∠CAD=∠BAD,然后根据∠DAE=∠CAD-∠CAE进行计算即可得解.

解答 解:∵AE⊥BC,
∴∠CAE=90°-∠C,
∵AD是△ABC的角平分线,
∴∠CAD=$\frac{1}{2}$∠BAC,
∴∠DAE=∠CAD-∠CAE=$\frac{1}{2}$∠BAC-(90°-∠C)=$\frac{1}{2}(180°-∠B-∠C)$-90°+∠C=$\frac{1}{2}$(∠C-∠B).

点评 本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网