题目内容

16.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),C点坐标为(6,2),D点坐标为(7,0),求证:直线CD是圆的切线.

分析 由A与B坐标确定出圆心M坐标,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD,进而确定出CE,ME,ED,MD的长,在直角三角形CEM中,利用勾股定理求出MC的长,在直角三角形CED中,利用勾股定理求出CD的长,再利用勾股定理的逆定理确定出∠MCD的度数,即可得证.

解答 证明:由图象知,A(0,4),
∵B (4,4)可得该圆弧所在圆的圆心坐标是M(2,0),
如图,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD,
∴CE=2,ME=4,ED=1,MD=5,
在Rt△CEM中,∠CEM=90°,
∴MC2=ME2+CE2=42+22=20,
在Rt△CED中,∠CED=90°,
∴CD2=ED2+CE2=12+22=5,
∴MD2=MC2+CD2
∴∠MCD=90°,
又∵MC为半径,
∴直线CD是⊙M的切线.

点评 此题考查了切线的判定,坐标与图形性质,熟练掌握切线的判定方法是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网