题目内容
11.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能( )| A. | B. | C. | D. |
分析 由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.
解答 解:∵在一次函数y=kx+b中k+b=0,
∴y=kx+b的图象在一、三、四象限或一、二、四象限.
故选A.
点评 本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.
练习册系列答案
相关题目
6.
为抵制乐天,吸引顾客,某商场进行一个有奖销售的促销活动,设立了一个可以自由转动的转盘,并规定,顾客购物200元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:
(1)计算上述表格中a、b的值.a=0.71,b=564;
(2)请估计当n很大时,落在“可乐”区域的频率将会接近0.7;假如你去转动该转盘一次,你获得“可乐”的概率约是0.7;(结果全部精确到0.1)
(3)在该转盘中,表示“电吹风”区域的扇形的圆心角a约是多少度?(结果精确到1°)
| 转动转盘的次数n | 100 | 200 | 400 | 500 | 800 | 1000 |
| 落在“可乐”区域的次数m | 72 | 142 | 278 | 355 | b | 701 |
| 落在“可乐”区域的频率$\frac{m}{n}$ | 0.72 | 0.71 | 0.695 | a | 0.705 | 0.701 |
(2)请估计当n很大时,落在“可乐”区域的频率将会接近0.7;假如你去转动该转盘一次,你获得“可乐”的概率约是0.7;(结果全部精确到0.1)
(3)在该转盘中,表示“电吹风”区域的扇形的圆心角a约是多少度?(结果精确到1°)
1.
如图,4块安全相同的长方形围成一个正方形,图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是( )
| A. | (a+b)(a-b)=a2-b2 | B. | (a+b)2-(a-b)2=2ab | C. | (a+b)2-(a-b)2=4ab | D. | (a-b)2+2ab=a2+b2 |