ÌâÄ¿ÄÚÈÝ
20£®½â·½³Ìx4-7x2+12=0£¬ÕâÊÇÒ»¸öÒ»ÔªËĴη½³Ì£¬¸ù¾Ý¸Ã·½³ÌµÄÌØµã£¬ËüµÄ½â·¨Í¨³£ÊÇ£ºÉèx2=y£¬ÔòÔ·½³Ì¿É±äΪy2-7y+12=0¢Ù£¬½âµÃy1=3£¬y2=4£®µ±y=3ʱ£¬x2=3£¬¡àx=¡À$\sqrt{3}$£»
µ±y=4ʱ£¬x2=4£¬¡àx=¡À2£»
¡àÔ·½³ÌÓÐËĸö¸ù£ºx1=$\sqrt{3}$£¬x2=-$\sqrt{3}$£¬x3=2£¬x4=-2£®
£¨1£©ÔÚÓÉÔ·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓû»Ôª·¨´ïµ½½µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁËÊýѧµÄת»¯Ë¼Ï룮
£¨2£©ÀûÓÃÉÏÊö·½·¨½â·½³Ì£º£¨x2+x£©2+£¨x2+x£©-6=0£®
·ÖÎö £¨1£©ÓÃÒ»¸ö×Öĸ±íʾһ¸ö½Ï¸´ÔӵĴúÊýʽµÄ·½·¨½Ð»»Ôª·¨£®
£¨2£©ÓÃy´úÌæx2+x¼´¿É£®
½â´ð ½â£º£¨1£©ÔÚÓÉÔ·½³ÌµÃµ½·½³Ì¢ÙµÄ¹ý³ÌÖУ¬ÀûÓû»Ôª·¨´ïµ½½µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룮
¹Ê´ð°¸ÊÇ£º»»Ôª£»
£¨2£©Éèx2+x=y£¬Ô·½³Ì¿É»¯Îªy2+y-6=0£¬
½âµÃy1=-3£¬y2=2£®
ÓÉx2+x=-3£¬µÃx2+x+3=0£¬
¡÷=1-4¡Á3=-11£¼0£¬´Ë·½³ÌÎ޽⣮
ÓÉx2+x=2£¬µÃ·½³Ìx2+x-2=0£¬
½âµÃ£ºx1=$\frac{-1+2\sqrt{2}}{2}$£¬x2=$\frac{-1-2\sqrt{2}}{2}$£®
ËùÒÔÔ·½³ÌµÄ½âΪx1=$\frac{-1+2\sqrt{2}}{2}$£¬x2=$\frac{-1-2\sqrt{2}}{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁË»»Ôª·¨£¬¼´°Ñij¸öʽ×Ó¿´×÷Ò»¸öÕûÌ壬ÓÃÒ»¸ö×Öĸȥ´úÌæËü£¬ÊµÐеÈÁ¿Ìæ»»£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÏÂÁи÷×éÊýÊǹ´¹ÉÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | 3£¬4£¬5 | B£® | 1.5£¬2£¬2.5 | C£® | 32£¬42£¬52 | D£® | $\sqrt{3}$£¬$\sqrt{4}$£¬$\sqrt{5}$ |