题目内容
1.解方程组(1)$\left\{\begin{array}{l}{x=3y+5}\\{3y=8-2x}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-3y=8}\\{7x-5y=-5}\end{array}\right.$
(3)$\left\{\begin{array}{l}{5(x+y)-3(x-y)=16}\\{3(x+y)-5(x-y)=0}\end{array}\right.$.
分析 (1)利用代入消元法解方程组;
(2)分别将①和②进行变形,将y的系数化为相等的-15,相减可得x的值,代入可得y的值;
(3)先去括号,整理,发现x和y的系数相反和相同,相加和相减可分别得y和x的值.
解答 解:(1)$\left\{\begin{array}{l}{x=3y+5①}\\{3y=8-2x②}\end{array}\right.$,
把①代入②得:3y=8-2(3y+5),
3y=8-6y-10,
9y=-2,
y=-$\frac{2}{9}$③,
把③代入①得:x=3×$(-\frac{2}{9})$+5=$\frac{13}{3}$,
∴方程组的解为:$\left\{\begin{array}{l}{x=\frac{13}{3}}\\{y=-\frac{2}{9}}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-3y=8①}\\{7x-5y=-5②}\end{array}\right.$,
①×5得:10x-15y=40③,
②×3得:21x-15y=-15④,
④-③得:11x=-55,
x=-5,
把x=-5代入①得:y=-6,
∴方程组的解为:$\left\{\begin{array}{l}{x=-5}\\{y=-6}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{5(x+y)-3(x-y)=16}\\{3(x+y)-5(x-y)=0}\end{array}\right.$,
整理得:$\left\{\begin{array}{l}{2x+8y=16①}\\{-2x+8y=0②}\end{array}\right.$,
①+②得:16y=16,
y=1,
①-②得:4x=16,
x=4,
∴方程组的解为:$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$.
点评 本题考查了二元一次方程组的解法,利用消元进行求解.题目比较简单,但需要认真细心.
| A. | ∠ABF | B. | ∠BAF | C. | ∠EMF | D. | ∠AFB |
| A. | 70° | B. | 45° | C. | 30° | D. | 35° |