题目内容
12.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;
(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)
(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.
分析 (1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;
(2)证明方法与(1)一样;
(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA-∠PDB.
解答
解:(1)如图①,过P点作PE∥AC交CD于E点,
∵AC∥BD
∴PE∥BD,
∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,
∴∠CPD=∠CPE+∠DPE=50°;
(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;
(3)∠CPD=∠PCA-∠PDB.理由如下:
如图②,过P点作PF∥BD交CD于F点,
∵AC∥BD,
∴PF∥AC,
∴∠CPF=∠PCA,∠DPF=∠PDB,
∴∠CPD=∠CPF-∠DPF=∠PCA-∠PDB;
点评 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.
练习册系列答案
相关题目
2.(-m+2n)2的运算结果是( )
| A. | m2+4mn+4n2 | B. | -m2-4mn+4n2 | C. | m2-4mn+4n2 | D. | m2-2mn+4n2 |
1.若x>y,下列不等式中不一定成立的是( )
| A. | x+2>y+2 | B. | 2x>2y | C. | a-x<a-y | D. | x2>y2 |
2.若a>b,则下列不等式成立的是( )
| A. | a2>b2 | B. | 1-a>1-b | C. | 3a-2>3b-2 | D. | a-4>b-3 |