题目内容

7.阅读并解决问题:
$\frac{1}{1+\sqrt{2}}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1,$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$,…,
(1)计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+…+$\frac{1}{\sqrt{8}+\sqrt{9}}$
(2)已知:x=$\frac{1}{2+\sqrt{3}}$,求x2-4x-1.

分析 (1)先把每一部分分母有理化,化简后合并同类二次根式即可;
(2)求出x的值,变形后代入求出即可.

解答 解:(1)$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+…+$\frac{1}{\sqrt{8}+\sqrt{9}}$
=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$+$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$+…+$\frac{\sqrt{9}-\sqrt{8}}{(\sqrt{9}+\sqrt{8})(\sqrt{9}-\sqrt{8})}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+…+$\sqrt{9}$-$\sqrt{8}$
=$\sqrt{9}$-1
=3-1
=2;

(2)∵x=$\frac{1}{2+\sqrt{3}}$=$\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$=2-$\sqrt{3}$,
∴x2-4x-1
=(x-2)2-5
=(2-$\sqrt{3}$-2)2-5
=3-5
=-2.

点评 本题考查了分母有理化的应用,能正确根据平方差公式分母有理化是解此题的关键,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网