题目内容

5.如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③$\frac{DG}{GC}$=$\frac{GO}{CE}$;④(a-b)2•S△EFO=b2•S△DGO.其中结论正确的个数是(  )
A.4个B.3个C.2个D.1个

分析 由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE;由△DGO与△DCE相似即可判定③错误,证明△EFO∽△DGO,即可求得④正确;即可得出结论.

解答 解:①∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,CD∥EF,
∴∠BCG=∠DCE.
在△BCG和△DCE中,$\left\{\begin{array}{l}{BC=DC}&{\;}\\{∠BCG=∠DCE}&{\;}\\{CG=CE}&{\;}\end{array}\right.$,
∴△BCG≌△DCE(SAS),
故①正确;
②延长BG交DE于点H,如图所示:
∵△BCG≌△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BGC=90°,
∴∠CDE+∠DGH=90°,
∴∠DHG=90°,
∴BH⊥DE;
∴BG⊥DE.
故②正确;
③∵四边形GCEF是正方形,
∴GF∥CE,
∴$\frac{DG}{DC}=\frac{GO}{CE}$,
$\frac{DG}{GC}=\frac{GO}{CE}$是错误的.
故③错误;
④∵DC∥EF,
∴△EFO∽△DGO,
∴$\frac{{S}_{△EFO}}{{S}_{△DGO}}$=($\frac{EF}{DG}$)2=($\frac{b}{a-b}$)2=$\frac{{b}^{2}}{(a-b)^{2}}$,
∴(a-b)2•S△EFO=b2•S△DGO
故④正确;
正确的有3个,故选:B.

点评 本题主要考查正方形的性质、全等三角形的判定和性质及相似三角形的判定和性质,综合性较强,掌握三角形全等、相似的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网