题目内容

5.(1)$\left\{\begin{array}{l}{5x+6y+2z=80}\\{4x-3y+z=16}\\{3x-2z+6z=92}\end{array}\right.$              
(2)$\left\{\begin{array}{l}{x+2y=4}\\{2x+3z=13}\\{3y+z=6}\end{array}\right.$.

分析 方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{5x+6y+2z=80}\\{4x-3y+z=16}\\{3x-2z+6z=92}\end{array}\right.$       $\underset{\stackrel{①}{②}}{③}$,
方程②×2-①,得3x-12y=-48   ④,
方程②×6-③,得21x-16y=4   ⑤,
方程④⑤组成二元一次方程组,$\left\{\begin{array}{l}{3x-12y=-48}\\{21x-16y=4}\end{array}\right.$
解这个二元一次方程组,得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,
把x=4,y=5代入方程②,得z=15,
∴原方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=5}\\{z=15}\end{array}\right.$.

(2)$\left\{\begin{array}{l}{x+2y=4}\\{2x+3z=13}\\{3y+z=6}\end{array}\right.$.$\underset{\stackrel{①}{②}}{③}$,
方程①×2-②,得4y-3z=-5  ④,
方程③④组成二元一次方程组$\left\{\begin{array}{l}{3y+z=6}\\{4y-3z=-5}\end{array}\right.$,
解这个二元一次方程组,得$\left\{\begin{array}{l}{y=1}\\{z=3}\end{array}\right.$,
把y=1代入方程①,得x+2=4,
解,得x=2,
∴原方程组的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=3}\end{array}\right.$

点评 此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网