题目内容
5.(1)$\left\{\begin{array}{l}{5x+6y+2z=80}\\{4x-3y+z=16}\\{3x-2z+6z=92}\end{array}\right.$(2)$\left\{\begin{array}{l}{x+2y=4}\\{2x+3z=13}\\{3y+z=6}\end{array}\right.$.
分析 方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{5x+6y+2z=80}\\{4x-3y+z=16}\\{3x-2z+6z=92}\end{array}\right.$ $\underset{\stackrel{①}{②}}{③}$,
方程②×2-①,得3x-12y=-48 ④,
方程②×6-③,得21x-16y=4 ⑤,
方程④⑤组成二元一次方程组,$\left\{\begin{array}{l}{3x-12y=-48}\\{21x-16y=4}\end{array}\right.$
解这个二元一次方程组,得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,
把x=4,y=5代入方程②,得z=15,
∴原方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=5}\\{z=15}\end{array}\right.$.
(2)$\left\{\begin{array}{l}{x+2y=4}\\{2x+3z=13}\\{3y+z=6}\end{array}\right.$.$\underset{\stackrel{①}{②}}{③}$,
方程①×2-②,得4y-3z=-5 ④,
方程③④组成二元一次方程组$\left\{\begin{array}{l}{3y+z=6}\\{4y-3z=-5}\end{array}\right.$,
解这个二元一次方程组,得$\left\{\begin{array}{l}{y=1}\\{z=3}\end{array}\right.$,
把y=1代入方程①,得x+2=4,
解,得x=2,
∴原方程组的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=3}\end{array}\right.$
点评 此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| A. | B. | C. | D. |
| A. | 无实数根 | B. | 两个相等的实数根 | ||
| C. | 两个不相等的实数根 | D. | 不确定 |
| A. | m≥-1 | B. | m<0 | C. | -1≤m<0 | D. | -1<m<0 |
①角;②线段;③等腰三角形;④等边三角形;⑤三角形.
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |