题目内容

15.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是(  )
A.3.2B.2C.1.2D.1

分析 如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到$\frac{AF}{AB}=\frac{FM}{BC}$求出FM即可解决问题.

解答 解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)

∵∠A=∠A,∠AMF=∠C=90°,
∴△AFM∽△ABC,
∴$\frac{AF}{AB}=\frac{FM}{BC}$,
∵CF=2,AC=6,BC=8,
∴AF=4,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=10,
∴$\frac{4}{10}$=$\frac{FM}{8}$,
∴FM=3.2,
∵PF=CF=2,
∴PM=1.2
∴点P到边AB距离的最小值是1.2.
故选C.

点评 本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网