题目内容

如图,P为△ABC的边BC的垂直平分线上的一点,此垂直平分线交BC于G,且∠PCB=
1
2
∠A,BP、CP的延长线分别交AC、AB于D、E.求证:BE=CD.
考点:相似三角形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质
专题:证明题
分析:作BF⊥CE于F点,CM⊥BD于M点.证明Rt△BEF≌Rt△CDM.易证Rt△PBF≌Rt△PCM,得到BF=CM;由于∠A=∠BPE,在四边形ADPE中,根据内角和定理可得∠BEF=∠CDM,所以Rt△BEF≌Rt△CDM.得证.
解答:证明:作BF⊥CE于F点,CM⊥BD于M点,
则∠PFB=∠PMC=90°.
∵PG是BC的垂直平分线,
∴PB=PC.
在△PBF和△PCM中,
∠PFB=∠PMC
∠BPF=∠CPM
PB=PC

∴△PBF≌△PCM(AAS),
∴BF=CM;
∵PB=PC,
∴∠PBC=∠PCB=
1
2
∠BPE.
∵∠PBC=
1
2
∠A,
∴∠A=∠BPE.
∴∠EPD+∠BPE=∠EPD+∠A=180°,
∴∠AEP+∠ADP=180°.
又∠AEP=∠BEF,∠ADP+∠CDM=180°,
∴∠BEF=∠CDM.
在△BEF和△CDM中,
∠BEF=∠CDM
∠BFE=∠CMD
BF=CM

∴△BEF≌△CDM(AAS).
∴BE=CD.
点评:此题考查了线段垂直平分线的性质以及全等三角形的判定与性质.此题难度适中,注意构造全等三角形是关键,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网