题目内容

2.如图,在8×8的正方形网格中(每个小正方形的边长均为1)有一个△ABC,其顶点均在小正方形顶点上,请按要求画出图形.
(1)将△ABC绕点C顺时针旋转90°得到△CDE(点A、B的对应点分别为D、E),画出△CDE;
(2)在正方形网格的格点上找一点F,连接BF、FE、BE,使得△FBE的面积等于△BCE的面积.(画出一种情况即可)

分析 (1)利用网格特点和旋转的性质,画出点A、B的对应点D、E即可得到△CDE;
(2)平移BE使它过点C,则可得到格点F,则根据三角形面积公式可判断△FBE满足条件.

解答 解:(1)如图,△CDE为所作;
(2)如图,点F为所作.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网