题目内容

20.如图,已知A(-2,3)、B(4,3)、C(-1,-3)
(1)求点C到x轴的距离;
(2)求△ABC的面积;
(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.

分析 (1)点C的纵坐标的绝对值就是点C到x轴的距离解答;
(2)根据三角形的面积公式列式进行计算即可求解;
(3)设点P的坐标为(0,y),根据△ABP的面积为6,A(-2,3)、B(4,3),所以$\frac{1}{2}×6×|x-3|=6$,即|x-3|=2,所以x=5或x=1,即可解答.

解答 解:(1)∵C(-1,-3),
∴|-3|=3,
∴点C到x轴的距离为3;
(2)∵A(-2,3)、B(4,3)、C(-1,-3)
∴AB=4-(-2)=6,点C到边AB的距离为:3-(-3)=6,
∴△ABC的面积为:6×6÷2=18.
(3)设点P的坐标为(0,y),
∵△ABP的面积为6,A(-2,3)、B(4,3),
∴$\frac{1}{2}×$6×|y-3|=6,
∴|y-3|=2,
∴y=1或y=5,
∴P点的坐标为(0,1)或(0,5).

点评 本题考查了坐标与图形,解决本题的关键是利用数形结合的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网