题目内容

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD

(1)求证:BD平分∠ABC;

(2)当∠ODB=30°时,求证:BC=OD.

(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)由OD⊥AC OD为半径,根据垂径定理,即可得,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可证得BD平分∠ABC;

(2)首先由OB=OD,易求得∠AOD的度数,又由OD⊥AC于E,可求得∠A的度数,然后由AB是⊙O的直径,根据圆周角定理,可得∠ACB=90°,继而可证得BC=OD.

试题解析:证明:(1)∵OD⊥AC OD为半径,

∴∠CBD=∠ABD,

∴BD平分∠ABC;

(2)∵OB=OD,

∴∠OBD=∠0DB=30°,

∴∠AOD=∠OBD+∠ODB=30°+30°=60°,

又∵OD⊥AC于E,

∴∠OEA=90°,

∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,

又∵AB为⊙O的直径,

∴∠ACB=90°,

在Rt△ACB中,BC=AB,

∵OD=AB,

∴BC=OD.

考点:1.圆周角定理;2.含30度角的直角三角形;3.垂径定理

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网