题目内容
考点:等腰直角三角形,三角形内角和定理,相似三角形的判定与性质
专题:
分析:法(1)先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD;
法(2)先作∠BAC的平分线交BM于N,得出∠ABN=∠CAE,再根据∠BAN=∠C=45°,AB=AC,证出△BAN≌△ACD,得出AN=CD,证出△NAM≌△DCM,即可得出∠AMB=∠CMD.
法(2)先作∠BAC的平分线交BM于N,得出∠ABN=∠CAE,再根据∠BAN=∠C=45°,AB=AC,证出△BAN≌△ACD,得出AN=CD,证出△NAM≌△DCM,即可得出∠AMB=∠CMD.
解答:证明:法(1)如图,延长AD至F,使得CF⊥AC,
∵AB⊥AC,AD⊥BM,
∴∠ABM=∠DAC,
又∵AB=AC,CF⊥AC,
∴△ABM≌△CAF,
∴∠BMA=∠F,AM=CF,
∵∠BCA=∠BCF=45°,AM=CM=CF,DC=DC,
∴△FCD≌△MCD,
∴∠AMB=∠F=∠CMD;
法(2)AD交BM于E,作∠BAC的平分线交BM于N,

∵AE⊥BM,BA⊥AC,
∴∠ABN=∠CAE,
∵∠BAN=∠C=45°,AB=AC,
∴△BAN≌△ACD.
∴AN=CD,
∵∠NAM=∠C=45°,AM=MC
∴△NAM≌△DCM,
∴∠AMB=∠CMD.
∵AB⊥AC,AD⊥BM,
∴∠ABM=∠DAC,
又∵AB=AC,CF⊥AC,
∴△ABM≌△CAF,
∴∠BMA=∠F,AM=CF,
∵∠BCA=∠BCF=45°,AM=CM=CF,DC=DC,
∴△FCD≌△MCD,
∴∠AMB=∠F=∠CMD;
法(2)AD交BM于E,作∠BAC的平分线交BM于N,
∵AE⊥BM,BA⊥AC,
∴∠ABN=∠CAE,
∵∠BAN=∠C=45°,AB=AC,
∴△BAN≌△ACD.
∴AN=CD,
∵∠NAM=∠C=45°,AM=MC
∴△NAM≌△DCM,
∴∠AMB=∠CMD.
点评:此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和相似三角形的判断与性质进行解答即可.
练习册系列答案
相关题目
如果
+
>2,那么有可能的是( )
| 1 |
| m |
| 1 |
| n |
| A、m>1,n>1 |
| B、m<0,n<0 |
| C、m>1,n>0 |
| D、m<0,n>1 |
从装有7种颜色每色77个球的袋中摸球出来,摸时没法判断颜色,要确保摸出的球装满7盒,每盒7个球,盒中的球同色,则至少需要摸出( )个球.
| A、85 | B、84 | C、71 | D、50 |