题目内容
阅读材料:
=
=
-1;
=
=
-
;
=
=
-2
…
按照上述式子变形的思路求:
(1)
;
(2)
(n为正整数)
(3)根据你发现的规律,请计算:(
+
+
+…+
+
)(1+
).
| 1 | ||
|
1×(
| ||||
(
|
| 2 |
| 1 | ||||
|
| ||||||||
(
|
| 3 |
| 2 |
| 1 | ||
|
| ||||
(
|
| 5 |
…
按照上述式子变形的思路求:
(1)
| 1 | ||||
|
(2)
| 1 | ||||
|
(3)根据你发现的规律,请计算:(
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 2011 |
考点:分母有理化
专题:规律型
分析:(1)利用已知将分子与分母同乘以(
-
)得出即可;
(2)利用已知将分子与分母同乘以(
-
)得出即可;
(3)利用(1)中所求规律进而化简求出即可.
| 7 |
| 6 |
(2)利用已知将分子与分母同乘以(
| n+1 |
| n |
(3)利用(1)中所求规律进而化简求出即可.
解答:解:(1)
=
=
-
;
(2)
=
=
-
;
(3)(
+
+
+…+
+
)(1+
)
=(
-1+
-
+
-
+…+
-
)×(1+
)
=(
-1)×(1+
)
=2011-1
=2010.
| 1 | ||||
|
| ||||||||
(
|
| 7 |
| 6 |
(2)
| 1 | ||||
|
| ||||||||
(
|
| n+1 |
| n |
(3)(
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 2011 |
=(
| 2 |
| 3 |
| 2 |
| 4 |
| 3 |
| 2011 |
| 2010 |
| 2011 |
=(
| 2011 |
| 2011 |
=2011-1
=2010.
点评:此题主要考查了分母有理化,正确化简二次根式是解题关键.
练习册系列答案
相关题目