题目内容

三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是 (  )

A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 根本无法确定

C 【解析】∵32+42=25,∴以3、4为直角边的三角形的斜边为5, ∵5<6,∴以3、4、6为三边构成的三角形是钝角三角形. 故选:C.
练习册系列答案
相关题目

函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是(  )

A. B. C. D.

B 【解析】A选项中,若反比例函数如图,则,那么抛物线应与y轴交于负半轴,所以A不可能; B选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以B可能; C选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以C不可能; D选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以D不可能; 故选B. ...

已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB边上的中线对吗?说明理由.

见解析 【解析】试题分析:先求出∠ACD=30°,∠BCD=60°,然后根据角平分线的定义求出∠DCE=∠BCE=30°,再根据直角三角形两锐角互余求出∠B,∠A,从而得到∠A=∠ACE,∠B=∠BCE,根据等角对等边的性质可得AE=EC,BE=EC,然后求出AE=BE,即可得解. 试题解析:CE是AB边上的中线。 理由:∵∠ACB=90°,∠ACD:∠BCD=1:2, ∴...

如图,∠A=∠D,AC=DF,那么需要补充一个直接条件________(写出一个即可),才能使△ABC≌△DEF.

AB=DE(或∠B=∠E或∠C=∠F) 【解析】添加条件AB=DE, 在△ABC和△DEF中, , ∴△ABC≌△DEF(SAS); 或添加条件∠B=∠E, 在△ABC和△DEF中, , ∴△ABC≌△DEF(AAS); 或添加条件∠C=∠F, 在△ABC和△DEF中, , ∴△ABC≌△DEF(ASA); 故答案为:AB=DE(或...

等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是(  )

A. x<6 B. 6<x<12 C. 0<x<12 D. x>12

B 【解析】等腰三角形的周长为24cm,腰长为xcm,则底边长为24-2x, 根据三边关系,x+x>24-2x,解得,x>6; x-x<24-2x,解得,x<12, 所x的取值范围是6<x<12. 故选:C.

分解因式:x2(x-y)2-4(y-x)2.

(x-y)2(x+2)(x-2) 【解析】试题分析:提取公因式(x-y)2后,再利用平方差公式因式分解即可. 试题解析: x2(x-y)2-4(y-x)2 =x2(x-y)2-4(x-y)2 =(x-y)2(x2-4) =(x-y)2(x+2)(x-2).

如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为_______。

8 【解析】当抛物线y=a(x-m)2+n的顶点在线段AB的A点上时,点C的横坐标最小,把A(1,4)代入得:y=a(x-1)2+4,把C(-3,0)代入得:0=a(-3-1)2+4,解得:a=-,即:y=-(x-1)2+4,再根据题意知抛物线y=a(x-m)2+n的顶点在线段AB上运动,可得抛物线的a永远等于-,当抛物线的顶点运动到B时,D的横坐标最大,把a=-和B(4,4)代入y=a(x...

已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.

【解析】【解析】 由已知得:a=,b= 又∵a≤4<b ∴ 解此不等式组,得 -2<x≤3.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网