题目内容

如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )

A. 50° B. 51° C. 51.5° D. 52.5°

D 【解析】试题分析:根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=(180°﹣25°)=77.5°,,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故答案选D.
练习册系列答案
相关题目

一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是(  )

A. 摸到红球是必然事件

B. 摸到白球是不可能事件

C. 摸到红球与摸到白球的可能性相等

D. 摸到红球比摸到白球的可能性大

D 【解析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可. 【解析】 A.摸到红球是随机事件,故此选项错误; B.摸到白球是随机事件,故此选项错误; C.摸到红球比摸到白球的可能性相等, 根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误; D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到...

已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.

(1)求w与x之间的函数关系式,并写出自变量x的取值范围;

(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?

(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.

(1)w=﹣20x2+100x+6000,x≤4,且x为整数;(2)售价不低于56元且不高于60元时,每星期利润不低于6000元. 【解析】试题分析:(1)根据利润=(售价﹣进价)×销售件数即可求得W与x之间的函数关系式; (2)利用配方法求得函数的最大值,从而可求得答案; (3)根据每星期的销售利润不低于6000元列不等式求解即可. 试题解析: (1)w=(20﹣x)(3...

函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是(  )

A. B. C. D.

B 【解析】A选项中,若反比例函数如图,则,那么抛物线应与y轴交于负半轴,所以A不可能; B选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以B可能; C选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以C不可能; D选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以D不可能; 故选B. ...

如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O

(1)连接OA,求∠OAC的度数;

(2)求:∠BOC。

(1) 40°;(2) 130° 【解析】试题分析:(1)连接AO,利用等腰三角形的对称性即可求得∠OAC的度数;(2)利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求∠BOC的度数. 试题解析: (1)连接AO, ∵在等腰△ABC中,∠B和∠C的平分线相交于点O, ∴等腰△ABC关于线段AO所在的直线对称, ∵∠A=80°, ...

已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB边上的中线对吗?说明理由.

见解析 【解析】试题分析:先求出∠ACD=30°,∠BCD=60°,然后根据角平分线的定义求出∠DCE=∠BCE=30°,再根据直角三角形两锐角互余求出∠B,∠A,从而得到∠A=∠ACE,∠B=∠BCE,根据等角对等边的性质可得AE=EC,BE=EC,然后求出AE=BE,即可得解. 试题解析:CE是AB边上的中线。 理由:∵∠ACB=90°,∠ACD:∠BCD=1:2, ∴...

如图,∠A=∠D,AC=DF,那么需要补充一个直接条件________(写出一个即可),才能使△ABC≌△DEF.

AB=DE(或∠B=∠E或∠C=∠F) 【解析】添加条件AB=DE, 在△ABC和△DEF中, , ∴△ABC≌△DEF(SAS); 或添加条件∠B=∠E, 在△ABC和△DEF中, , ∴△ABC≌△DEF(AAS); 或添加条件∠C=∠F, 在△ABC和△DEF中, , ∴△ABC≌△DEF(ASA); 故答案为:AB=DE(或...

分解因式:x2(x-y)2-4(y-x)2.

(x-y)2(x+2)(x-2) 【解析】试题分析:提取公因式(x-y)2后,再利用平方差公式因式分解即可. 试题解析: x2(x-y)2-4(y-x)2 =x2(x-y)2-4(x-y)2 =(x-y)2(x2-4) =(x-y)2(x+2)(x-2).

从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t﹣5t2,那么小球抛出 秒后达到最高点.

3 【解析】试题分析:首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=30t﹣5t2的顶点坐标即可. 【解析】 h=﹣5t2+30t, =﹣5(t2﹣6t+9)+45, =﹣5(t﹣3)2+45, ∵a=﹣5<0, ∴图象的开口向下,有最大值, 当t=3时,h最大值=45; 即小球抛出3秒后达到最高点. 故答案为:3. ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网