题目内容

如图,△ABC中,∠ACB=90°,AC=7cm,BC=1lcm.点M从A点出发沿A→C→B路径向终点运动,终点为B点;点N从B点出发沿B→C→A路径向终点运动,终点为A点.点M和N分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M和N作ME⊥l于E,NF⊥l于F.设运动时间为t秒,则当t=
 
秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.
考点:全等三角形的判定
专题:动点型,分类讨论
分析:易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.
解答:解:①当0≤t<
11
3
时,点M在AC上,点N在BC上,如图①,
此时有AM=t,BN=3t,AC=7,BC=11.
当MC=NC即7-t=11-3t,也即t=2时,
∵ME⊥l,NF⊥l,∠ACB=90°,
∴∠MEC=∠CFN=∠ACB=90°.
∴∠MCE=90°-∠FCN=∠CNF.
在△MEC和△CFN中,
∠MCE=∠CNF
∠MEC=∠CFN
MC=NC

∴△MEC≌△CFN(AAS).
②当
11
3
≤t<7时,点M在AC上,点N也在AC上,
若MC=NC,则点M与点N重合,故不存在.
③当7<t<18时,点N停在点A处,点N在BC上,如图②,
当MC=NC即t-7=7,也即t=14时,
同理可得:△MEC≌△CFN.
综上所述:当t等于2或14秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.
故答案为:2或14.
点评:本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网