题目内容

16.如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是(  )
A.3B.$\frac{24}{5}$C.5D.$\frac{89}{16}$

分析 由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD-BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE的长.

解答 解:∵矩形ABCD,
∴∠BAD=90°,
由折叠可得△BEF≌△BAE,
∴EF⊥BD,AE=EF,AB=BF,
在Rt△ABD中,AB=CD=6,BC=AD=8,
根据勾股定理得:BD=10,即FD=10-6=4,
设EF=AE=x,则有ED=8-x,
根据勾股定理得:x2+42=(8-x)2
解得:x=3(负值舍去),
则DE=8-3=5,
故选C

点评 此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网