题目内容

20.已知关于x的方程$\frac{2x+m}{x-2}$=3的解是正数,那么m的取值范围为(  )
A.m>-6且m≠-2B.m<6C.m>-6且m≠-4D.m<6且m≠-2

分析 先求得分式方程的解(含m的式子),然后根据解是正数可知m+6>0,从而可求得m>-6,然后根据分式的分母不为0,可知x≠2,即m+6≠2.

解答 解:将分式方程转化为整式方程得:2x+m=3x-6
解得:x=m+6.
∵方程得解为正数,所以m+6>0,解得:m>-6.
∵分式的分母不能为0,
∴x-2≠0,
∴x≠2,即m+6≠2.
∴m≠-4.
故m>-6且m≠-4.
故选:C.

点评 本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网